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FEASIBILITY  STUDY.OF  SHELL BUCKLING ANALYSIS 

USING THE MODIFIED  STRUCTURE METHOD 

By Gerald A. Cohen and  Raphael T. Haftka 
Structures   Research  Associates ,  Laguna  Beach, C a l i f o r n i a  

SUMMARY 

The  "modif ied  s t ructure"   method  for   the  approximate  calculat ion  of  non- 
l i nea r   buck l ing   l oads  is formula ted .   In   essence ,   th i s  method c o n s i s t s  of 
v iewing   the   nonl inear i ty   in   the   p rebuckl ing  s ta te  as being  caused  by an 
imperfec t ion   in   the   load   sys tem.  The l i n e a r   s o l u t i o n  is an exac t   so lu t ion  
i f   t h e  real loads  are augmented  by a f i c t i t i o u s  set of  loads.  The nonl inear  
behavior  under  the real loads is recovered   f rom  the   l inear   behavior  by 
consider ing a load   imper fec t ion   equa l   and   oppos i t e   t o   t he   f i c t i t i ous   l oads  
i n  the   con tex t  of Koiter ' s   imperfect ion  theory.  The  method is  appropr i a t e  
only i f   t h e   f i c t i t i o u s   l o a d s  are small enough t o   b e   t r e a t e d  as a n  
imperfection. 

The f e a s i b i l i t y  of a p p l y i n g   t h i s  method t o   s h e l l s  i s  examined  by 
t r ea t ing   numer i ca l ly  several cases of she l l s   o f   r evo lu t ion   unde r  axisym- 
metric loads.   Both  bifurcation  and l i m i t  load  buckling are considered. 
Except   for  cases wi th   very  small n o n l i n e a r i t y ,   t h e  method y ie lds   poor  
r e s u l t s   d u e   t o   u n e x p e c t e d l y   l a r g e   f i c t i t i o u s   l o a d s .  

In   add i t ion ,   t he   g rowth   o f   e r ro r   i n   t he   f i r s t -o rde r   l oad   imper fec t ion  
theory  used i s  eva lua ted   by   vary ing   the   s ize   o f   the   imperfec t ion   for  two 
sha11ov7 sphe r i ca l   cap  cases (one l i m i t  load  and  one  bifurcat ion case) from 
ze ro   t o   t he   fu l l   imper fec t ion   imp l i ed   by   t he   mod i f i ed   s t ruc tu re  method. 
It i s  shopm t h a t   t h e   e r r o r  grows much f a s t e r   i n  the b i f u r c a t i o n  case than  
i n   t h e  l i m i t  load case. However, even i n   t h e  l i m i t  load case, t h e   e r r o r  
grows to   an   unaccep tab le   va lue  (93.6%) when the   imperfec t ion   reaches   the  
s i z e   o f   t h e   f i c t i t i o u s   l o a d s .  

It is  therefore   concluded   tha t ,   a l though  the  method i s  t h e o r e t i c a l l y  
sound, i n  cases w i t h   s i g n i f i c a n t   n o n l i n e a r i t y   t h e   f i c t i t i o u s   l o a d s  may b e  
t o o   l a r g e   f o r  i t s  app l i ca t ion   u s ing   f i r s t -o rde r   l oad   imper fec t ion   t heo ry .  



INTRODUCTION 

Asymptotic  methods  for  the  analysis  of  postbuckling  behavior  and 
imperfection  sensitivity  of  structures  date  back  to  Koiter's  doctoral 
dissertation  (ref. 1) in 1945. It was  not,  however , until  the  early 
sixties  that  the  usefulness  of  these  methods  was  generally  recognized. 
Though  Koiter's  method  has  been  successfully  used  to  explain  the  large 
discrepancies  between  experimental  and  calculated  buckling  loads,  it  is 
still only in the  development  state  as  a  design  tool  for  predicting 
buckling  loads  of  engineering  structures. 

The  advantages  of  Koiter's  method  over  a  fully  nonlinear  analysis  of 
structures  are  twofold.  First,  a  nonlinear  problem  is  reduced  to  a  small 
number  (usually  one  or  two)  of  linear  problems.  Second,  Koiter's  analysis 
yields  the  approximate  behavior  of  a  whole  class  of  structures  differing 
from  the  original  by  small  "imperfections." 

Despite  these  advantages,  Koiter's  method  has  been  applied  only  to  a 
relatively  small  class  of  problems  because  of  limitations  which  have 
restricted  its  widespread  use. In its  original  form it applies  only  to 
structures  which  have  a  bifurcation  type  of  buckling.  The  fact  is  that 
limit load  buckling  is  much  more  common. In addition,  prior  knowledge  of 
the  prebuckling  path is necessary  to  apply  the  method.  The  calculation  of 
prebuckling  behavior  is  usually  a  nonlinear  problem.  If  this  nonlinear 
problem  is  not.  much  simpler  than  that  of  the  postbuckling  behavior,  then 
most  of  the  advantage  of  the  asymptotic  method  is  lost. 

Shells  of  revolution  under  axisymmetric  loading  generally  satisfy  the 
above  conditions  for  the  application  of  the  method.  Buckling  is  usually  of 
the  bifurcation  type  as  the  behavior  changes  from  axisymmetric  to  asymmetric, 
and  even  if  the  prebuckling  behavior  is  nonlinear,  it  is  much  simpler  to 
obtain  than  the  exact  postbuckling  behavior. It is  understandable,  there- 
fore,  that  most  applications  of  Koiter's  method  to  shell  structures  have  been 
to  shells  of  revolution.  Examples  are  given  by  Koiter  (ref. 2), Budiansky, 
Hutchinson  and  their  students  (refs. 3 and 4 )  for  spheres,  cylinders  and 
toroidal  segments,  and  by  Cohen's  (ref. 5 )  computer  program  for  ring- 
stiffened  orthotropic  shells  of  revolution  which  have  a  unique  buckling  mode. 

A  way  of  generalizing  Koiter's  method  to  remove  the  two  limitations 
noted  above ~~7as recently  proposed  by  Haftka,  Mallett  and  Nachbar  (ref. 6) 
and  successfully  applied  to  a  number  of  frame  and  arch  problems  (ref. 7). 
This  so-called  "modified  structure"  method  is  based  on  treating  the 
nonlinearity  of  the  prebuckling  path  as  a  special kind of  imperfection. 
The  linear  stability  analysis,  for  which  standard  methods  are  available  for 
most  engineering  structures,  is  viewed  not  as an approximation  to  the 
actual  behavior  of  the  structure,  but  as  the  exact  behavior  of  the 
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s t ruc ture   under  a modified  load  system. The d i f f e rence   be tween   t he   ac tua l  
and the  modified  load  systems is viewed as a load  imperfect ion.  As t h e  
l inear ized   s tab i l i ty   ana lys i s   a lmost   a lways   p roduces  a b i furca t ion   type   o f  
buckling, i t  is  poss ib l e   t o   r e t r i eve   t he   behav io r   o f   t he   ac tua l   s t ruc tu re  
by us ing   Koi te r ' s  method to   accoun t   fo r   t he   i n f luence   o f   t h i s   l oad  
imperfec t ion .   This   ana lys i s   represents   very  l i t t l e  e x t r a   e f f o r t  compared 
t o   t h e   l i n e a r   s t a b i l i t y   a n a l y s i s   b u t   g i v e s   a l m o s t  a l l  the  information  of  a 
cos t ly   non l inea r   ana lys i s .  

The buckl ing  of   shel ls   of   revolut ion  under  asymmetric loading i s  a 
problem  which may b e   s u i t a b l e   f o r   t h e   a p p l i c a t i o n  of t he   mod i f i ed   s t ruc tu re  
method.  The buckling i s  usua l ly   o f   the  l i m i t  load  type  and  even i n  
b i f u r c a t i o n  cases the   nonl inear   p rebuckl ing  state is  very   expens ive   to  
ca lcu la te .   I f ,   however ,   buckl ing . loads  are ca lcu la ted   on   the   bas i s   o f  a 
l inear ized   prebuckl ing   behavior ,   the   modi f ied   s t ruc ture  method may improve 
the  accuracy  of  such a ca lcu la t ion ,   us ing  it as a f i r s t   s t e p ,   w i t h  modest 
addi t iona l   computa t iona l   e f for t .  It may be   no ted   he re   t ha t  a computer 
program fo r   t he   ca l cu la t ion   o f   t hese   l i nea r i zed   buck l ing   l oads   has  
recently  been  developed  under a NASA con t rac t .  

A n a t u r a l  way t o   v e r i f y   t h e   a p p l i c a b i l i t y  of t h e  method t o   s h e l l s   o f  
revolu t ion  i s  t o  start w i t h   t h e  case of  axisymmetric  loading.  For  this 
case nonl inear   so lu t ions  are a v a i l a b l e   o r  may be   r ead i ly   ob ta ined  and may 
be  used  to   evaluate   the  accuracy and e f f i c i ency   o f   t he  method.  The 
purpose  of   the  present   s tudy is  t o  assess the  accuracy  of  the  modified 

' s t r u c t u r e  method f o r   s h e l l   s t r u c t u r e s  by ac tua l   app l i ca t ion   o f   t he  method 
t o   s e v e r a l  cases o f   s h e l l s  of revolution  under  axisymmetric  loading. 

SYMBOLS 

f i r s t  and  second  postbuckling  coefficients 

dimensionless area 'of r i n g   c r o s s   s e c t i o n  . 

Young's  modulus 

mer id iona l   and   c i r cumfe ren t i a l   l i nea r   s t r a in   exp res s ions  

e x t e r n a l   r i n g   f o r c e  components pe r   un i t   o f   l eng th  

~-7ork f u n c t i o n a l s   ( r e f .  9) 

sha l low  sphe r i ca l   she l l  rise 

e x t e r n a l   s h e l l   s u r f a c e  moments pe r   un i t   o f  area i n   t h e  
mer id iona l   and   c i rcumferent ia l   d i rec t ions ,   respec t ive ly  
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cylindrical  shell  length 

modified  shear  stress  couple 

external  ring  moment  components  per  unit  of  length 

circumferential  wave  number 

pressure  distribution  associated  with  normal  pressure 
field  Xp(x,y,4);  also  pressure  applied  to  spherical  cap 

spherical  radius 

small  circle  radius 

semimajor  axis  of  spheroid 

semiminor  axis  of  spheroid 

effective  shell  force  per  unit of circumferential  length 

meridional  and  circumferential  shell  coordinates 

meridional  and  circumferential  stress  resultants 

modified  shear  stress  resultant 

ring  hoop  stress  resultant 

shell  thickness 

meridional  and  normal  displacement  components 

shell  displacement  vector 

external  shell  surface  forces  per  unit  of  area  in 
meridional,  circumferential,  and  normal  directions, 
respectively 

axial  and  radial  coordinates 

imperfection  functionals 

effective y for  limit  load  case,  2(-au) 1/2 

pertaining  to  a  fictitious  load 

first  variation 

". 



012 shear  thermal  stress 

81,82,812  meridional,  circumferential,  and  shear  shell  free  thermal 
strains 

8R 

A shallow  spherical  shell  parameter, 2 [ 3 (1 - v2) ]'I4 (h/t) 1 /2  

circumferential  free  thermal  strain of a ring 

X load  factor 

V Poisson's  ratio 

E perturbation  parameter  in  imperfection  analysis 
- 
5 imperfection  amplitude 

s,n axial  and  radial  shell  displacements 

x,--ICI,w shell  rotations  about  circumferential,  meridional,  and 
normal  directions,  respectively 

w xswy . ring  rotation  components 

Generalized  field  variables  and  operators: 

H ( E )  linear  operator  relating  stress to strain 

L1(4  linear  operator  representing  linear  part  of  strain- 
displacement  relations 

L2 (4 quadratic  operator  representing  nonlinear  part of strain- 
displacement  relations 

L11 (UYV) bilinear  operator  defined  by  the  identity L~(u + v) = 
L2(4 + 2L11(u,v) + L2(v) 

q(X) mechanical  load 

40 dead  part  of  mechanical  load  at X = 1 

91 ( 4  linear  operator  representing  live  part  of  mechanical  load 
a t X = 1  

U displacement 

uol,ubl,ull  expansion  states  defined  by  equation (5) 

E strain 
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Subscripts :  

C 

Superscr ipts :  

f r e e   t h e r m a l   s t r a i n  

f r e e   t h e r m a l   s t r a i n  a t  X = 1 

stress 

a t  b i f u r c a t i o n   o f   p e r f e c t   s t r u c t u r e  

a t  buckl ing  of   imperfect   s t ructure  

per ta in ing   to   p rebuckl ing ,   buckl ing ,   o r   pos tbuckl ing  
states, r e spec t ive ly  

pe r t a in ing   t o   t he   ax i symmet r i c  component of t h e  second- 
order   postbuckl ing state 

a (  > / a x  
a2( > / a X 2  

pe r t a in ing   t o   imper fec t ion  a t  5 = 1 

p e r t a i n i n g   t o   l i n e a r   r e s p o n s e  a t  1 = 1 

evaluated a t  X = X 
C 

a (  > / a +  

ANALYTICAL FORMULATION 

The modi f ied   s t ruc ture  method i s  based  upon t h e   i d e a   t h a t   t h e  l inear  
approximation  to   the  behavior   of  a s t ruc tu re   unde r  a given  load  system is  
a l s o   t h e  exact behavior  under a d i f f e r e n t  set  of  loads.  The d i f f e r e n c e  
between t h e  two sets of  loads i s  t r e a t e d  as a load   imper fec t ion   i n   t he  
framewqrk  of K o i t e r ' s  method to   co r rec t   t he   buck l ing   l oad   ob ta ined  from t h e  
l i n e a r   a n a l y s i s .   T h i s  method is  appropr i a t e ,   o f   cou r se ,   on ly   i f   t he   exac t  
behavior is n o t  so  h ighly   nonl inear   tha t   the   d i f fe rence   be tween  the  two 
sets of loads is t o o   l a r g e   t o   b e   d e a l t   w i t h  as an  imperfect ion.  

The formulation  of  the method is n a t u r a l l y   d i v i d e d   i n t o  two independent 
p a r t s :  (1) the   load   imperfec t ion   ana lys i s ,   which   y ie lds   the   change   in   the  
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behavior  of a bifurcating  structure  due  to a small  change  in  the  load 
system,  and (2) the  determination  of  the  fictitious  loads  t7ith  which  the 
real  loads  must be augmented in order  to  enforce a linear  prebuckling 
response.  In  the  modified  structure  method, it is  convenient  to  think  of 
the  "perfect  structure"  as  the  structure  with  the  augmented  load  system 
(real  plus  fictitious)  applied to it.  This  structure,  which  has a linear 
prebuckling  response,  is  analyzed  by  conventional  numerical  methods.  The 
imperfect  structure"  is  the  same  structure  with  only  the  real  loads  (the 
loads  of  interest)  applied to it. Its  behavior  is  approximately  recovered 
from  the  behavior  of  the  perfect  structure  through  the  load  imperfection 
theory,  i.e., by treating  the  negative  of  the  fictitious  loads  as  an 
imperfection. 

11 

Load  Imperfection  Analysis 

Imperfections  usually  considered  in  the  application  of  Koiter's  method 
are  initial  deformations,  i.e.,  geometric.  The  theory,  however,  is 
applicable to other  kinds  of  imperfections,  and  here it is  applied  to  load 
imperfections.  The  imperfection  in  the  load  system  is  viewed  as  additional 
sets  of  mechanical  loads & and  free  thermal  strains ss, where 5 is a 
scalar  imperfection  amplitude.  Both < and s may  depend  on  the  loading 
intensity A'. The  development  here  is  similar  to  that of reference 8 for 
geometric  imperfections. 

The  basic  equations  describing  the  behavior  of  an  elastic  structure 
with a load  imperfection  are:  the  strain  displacement  relationship 

the  constitutive  equation 

and  equilibrium  equation 

where 

The  external  mechanical  and  thermal  loads,  q.and 8, are  assumed  to be of 
the  formt 

tIt should  be  noted  that  the  results  of  this  section  do  not  rely  on  the  linear 
dependence  of  the  dead  mechanical  and  thermal  loads  on A. The  results  are 
unaltered  if Ae0 and Aqo are  replaced  by  the  arbitrary  functions B O ( A )  and 
qo(A), respectively.  As  seen  in  the  next  section,  in  the  modified  structure 
method  the  effective  applied  loads  on  the  perfect  structure  are  quadratic  in X. 

7 



where  q1(u)  ( the l ive load   pa r t )  i s  a l i n e a r   o p e r a t o r   s a t i s f y i n g   f o r  any 
~ W O  admissible   displacement   vectors  u and v t h e   r e c i p r o c a l   r e l a t i o n  

41  (u) *V = q l  (VI 'U ( 4 )  .. 

The p e r f e c t   s t r u c t u r e  (t = 0) is assumed t o  have a b i f u r c a t i o n  a t  load 
level X, from a fundamental  prebuckling state uo(X). The displacement 
expans ion   for   the   imperfec t   s t ruc ture  i s  assumed i n   t h e  form [cf .  eq. (31) 
of-   re f .  81 

- u = uo(X) + CUI + 5 2 9  + * *  + & l o 1  + ( X  - X C ) U b l  

+ (1/2) ( X  - Xc)2u;l + + Cull + 52u21 + * -  - 3  + 
The prebuckling s ta te  uo(A) i s  expanded i n  a Taylor series about X 
follows 

where (*) deno tes   t ha t  a quan t i ty  i s  evaluated a t  X = X,. S imilar  
expansions are obta ined   for  ao(X), ;(X) and :(X). As i n   r e f e r e n c e  
dependence of X on 5 and f is  given  approximately  by 

( X  - X c ) C  - aXcS2 - bXcE3 = -<[aXc + B(X - Xc) + yXcS1 
- 

Subs t i t u t ing   equa t ion  ( 5 )  i n t o   e q u a t i o n   ( l a )  and  using  equations (6) and 
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Equations (9) may be obtained  from  equafions (36) of  reference 8 by setting 
the  geometric  imperfection  (denoted  by U in  that  paper) to zero. 

Substitution  of  equation (8) into  equation  (lb)  and  using  the  Taylor 
series  expansion  for ;(X) gives  the  stress  expansion 

where 

011-6q)fi + 00*'L~~(U~lY6U) - Xcq1(u11)-6u + 001'Lll(U1,6U) 
+ 01 *L11 (uo  1,6u) - yXcE(')  (u1  ,6u) - CXX~E'~) (u2 , 6u) 
- (1/2)aaX~2E(~)  (u1,6u) = o (124 

As in  references 8 and 9, compatibility  conditions  for  the  above 
field  equations  yield  expressions  for  the  coefficients a, by a, B ,  and 
y in  equation (7). The  postbuckling  coefficients a and b do  not  depend 
on  the  imperfection  and  are  given  by  (ref. 9) 

a = -301 *L2 (ul)  /2XcF(1)  (u1  ,ul) (134 

b = -[02*L2(u1) + 201*L11 (ul  ,u2) + ZIX,F(~) (UI ,u2) 
+ (1/2)a2Xc2F(2)  (u1  ,ul)  I/XcF(')  (u1  ,ul) ( 13b 1 
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The remain ing   coef f ic ien ts ,   which   de te rmine   the   s t ruc tura l   behavior   in   the  
presence  of a load  imperfect ion,  are given by 

CY = -[01*5* + i * * ~ l ] / X , F ( ~ ) ( u , , u l )   ( 1 4 4  

Once the  expansion states and c o e f f i c i e n t s  are ca lcu la ted ,   equa t ions  
(5) and (7) give  through  the  parameter 5 the  approximate  behavior  of  the 
imper fec t   s t ruc tu re  a t  l o a d s   i n   t h e   v i c i n i t y  of A,. I f  CY = f3 = 0, 
equat ion (7) h a s   t h e  two so lu t ions  

and 

Bifurcat ion  occurs  a t  t h e   i n t e r s e c t i o n   o f   t h e   t v o   s o l u t i o n s ,  so  t h a t   t h e  
buckling  load As of the   imper fec t   s t ruc tu re  i s  

- 
X = Xc(l - cy + a5 + be2)  (15b) 

In Appendix A, t h e   v a l i d i t y   o f   e q u a t i o n  (16) is v e r i f i e d  by t r e a t i n g   t h e  
s p e c i a l  case of a load   imperfec t ion   propor t iona l   to   the   appl ied   load .   I f  
CY # 0, the   imper fec t   s t ruc tu re  may buckle a t  a l i m i t  load  which is found 
from the   cond i t ion  dX/d< = 0. To a f i r s t  approximation,  neglecting f3 and 
y ,  t h i s   g i v e s  

As = h, [ l  - 2 (-crac) - 1/2, i f  crag < o (17a) 

X, = X c [ l  + 3(a2bz2/4)   1/3 3 i f a = O , b < O  (17b) 

F i c t i t i o u s  Loads 

Given t h e   f i e l d   e q u a t i o n s  of t h e   s t r u c t u r e ,   e q u a t i o n s   ( l a ) ,   ( l b ) ,  and 
( l e )   w i t h  = 0 , add i t iona l   l oads  A0 and Aq are sought   such  that  a s o l u t i o n  
of the f i e l d   e q u a t i o n s  is t h e   s o l u t i o n   o f   t h e   l i n e a r i z e d  set of equat ions 
given  below 
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The s o l u t i o n  of these equa t ions   depends   l i nea r ly   on   t he   l oad   f ac to r  A ,  i.e., 

where G ,  5 r e p r e s e n t   t h e   u n i t   l o a d  ( X  = 1) so lu t ion   of   equa t ions  (18). To 
make t h e   l i n e a r   s o l u t i o n   s a t i s f y   t h e   f i e l d   e q u a t i o n s ,   a d d i t i o n a l   l o a d s   h a v e  
t o   b e   a p p l i e d   t o   t h e   s t r u c t u r e .   S u b s t i t u t i o n  of U,U from  equation (19) 
i n t o   t h e   f i e l d   e q y a t i c n s ,   e l i m i n a t i o n  of E and  comparison  with  equations 
(18) shows t h a t  Xu, Xa are a s o l u t i o n   i f   t h e   a d d i t i o n a l   l o a d s  are given  by 

Equat ions   (20)   de te rmine   the   addi t iona l   ( f ic t i t ious)   load   sys tem  tha t   has  
t o   b e  imposed i n   o r d e r   t o   e n f o r c e   t h e   l i n e a r  state.? Thus the   l oads  q + Aq, 
8 + A8 are viewed as  the l o a d s   o f   t h e   p e r f e c t   s t r u c t u r e .  

The f i c t i t i o u s   l o a d s  A8, A q  h a v e   t h e   c h a r a c t e r i s t i c s   t h a t :  (1) they 
are second-degree  inthe  load  factor  X ,  and (2) they are dead  loads,. i.e., 
they do n o t  depend  on the   response  u. Consequently,  they do n o t   e n t e r  
e x p l i c i t l y   i n t o   t h e   e i g e n v a l u e   o r   h i g h e r   o r d e r   e q u a t i o n s .  

The iden t i f i ca t ion   o f   t he   l i nea r   app rox ima t ion  as t h e  exact response 
under   the  loads q + Aq and 8 + A8 pe rmi t s   t he  retrieval of the  response  under  
t h e   a c t u a l  set of   loads  by  using  Koiter ' s  method. This i s  done  by  viewing 
t h e   s t r u c t u r e   u n d e r   t h e   a c t u a l   l o a d s  as an   imper fec t   ve r s ion   o f   t he   s t ruc tu re  
under  the  modified  loads.  Thus the   behav io r   o f   t he   s t ruc tu re  is obtained 
approximate ly   by   t rea t ing ,   wi th   the   ana lys i s   o f   the   p rev ious   sec t ion ,   the  
follov7ing  load  imperfections 

w i t h   t h e  scalar amplitude E = 1. 

tNote   tha t   whereas   the  stress and  displacement  functions  obtained  from  the 
l i nea r i zed   equa t ions  are made exact by   t he   f i c t i t i ous   l oads   g iven   by  
equat ions (20) , t h e   s t r a i n s  are not .  
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It may be   no ted   tha t   s ince   the   p rebuckl ing   response   o f   the   per fec t  
s t r u c t u r e  i s  l inear ,   the   e igenvalue  equat ions  and  the e u t i o n s   f o r   h i g h e r  
o rde r  terms may be  s implif ied.   For   example,   the  term FqZ7(ul,ul) i n  
equations  (14b)  and  (14c) for f3  and y is i d e n t i c a l l y   z e r o .  Also, i n  
c o n t r a s t   t o   t h e   f o r m u l a t i o n   o f   r e f e r e n c e s  6 and 7,  i n   t h e   p r e s e n t  
fo rmula t ion   t he   buck l ing   p rob lem  fo r   t he   pe r f ec t   s t ruc tu re   r educes   t o  a 
l inear   e igenvalue   p roblem,   s ince   bo th  a0 and uo are l i n e a r   f u n c t i o n s . o f  A .  
From re fe rence  9 ,  these  e igenvalue  equat ions are 

01 = ~ ( ~ 1 1  (22b) 

01 'Ll(6U) + XcO1 'L11 (G,6u) + AcG*L1l ( U l  ,6u) 

- Acql ( U l )  *6u = 0 ( 2 2 4  

I n  summary, t o   a p p l y   t h e  method, the  l inear   prebuckl ing,   e igenvalue,   and 
higher   order   equat ions are solved.  Using  these  response states and t h e  
imperfection  given  by  equations (21), t h e   c o e f f i c i e n t s  a ,  b ,  a, B,-and y 
are evaluated. The c r i t i ca l  load computed  from  equation (7) w i th  5 = 1 is  
then   the   des i red   approximat ion   to   the   buckl ing   load .  

RESULTS 

AS noted i n  the   In t roduct ion ,   the   purpose   o f   th i s   s tudy  was t o  assess 
t h e   f e a s i b i l i t y   o f   a p p l y i n g   t h e   m o d i f i e d   s t r u c t u r e  method t o   s h e l l  
s t r u c t u r e s   b y   a c t u a l   a p p l i c a t i o n   t o  several cases of s h e l l s ' o f   r e v o l u t i o n  
under  axisymmetric  loads.   For  such  problems,  there are two poss ib le   types  
of elastic i n s t a b i l i t y .   F o r   t h i n   s h e l l s ,   t h e   b u c k l i n g  i s  u s u a l l y   i n   t h e  
form Of b i f u r c a t i o n   i n t o   a n  asymmetric (harmonic) mode. For   th icker  
s h e l l s ,  axisymmetric l i m i t  load  buckling may b e   t h e   f a i l u r e  mode. Both of 
t h e s e  cases are t r e a t e d .  

The s o l u t i o n  of t h e  linear prebuckling,  eigenvalue,  and  postbuckling 
e q u a t i o n s   r e q u i r e d   i n   t h e  method was accomplished  through  the  use  of 
prebuckl ing   ( re f .  10) , buckl ing   ( re f .  11) , and pos tbuckl ing   ( re fs .  5 and 
12)  computer  programs.+  The  specialization  of  equations (14) and (20) f o r  
t he   imper fec t ion   coe f f i c i en t s   and   f i c t i t i ous   l oads   t o   she l l s   o f   r evo lu t ion  
under  axisymmetric  loads is g i v e n   i n  Appendix B. 

?S ince   the   wr i t ing   o f   re fe rences  5 and  10-12, these  programs  have  been 
upgraded  by the  implementat ion  of   the Zarghamee  method ( r e f .  13) of 
solution  of  one-dimensional  boundary  value  problems. 
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Sample S h e l l   C a l c u l a t i o n s  

Ca lcu la t ions  of  nonlinear  buckling  loads by the   mod i f i ed   s t ruc tu re  
method were made for   the  fol lowing  sample  shel ls ,   which  have  been  s tudied 
previously by conventional  methods. 

Clamped shallow  spherical   cap  under  uniform  dead  pressure,  
A = 6 ( r e f s .  11 and  14).  The she l l   sub tends  a 20" ha l f -  
angle ,   and   has   the   p roper t ies  v = 1/3,   and t / R  = 0.01094. 

Prolate  spheroid  under  uniform l ive  and  dead  pressure 
( r e f .  11). The p r o p e r t i e s  of t h i s   s h e l l  are v = 0.4, 
ra/rb = 3,  and t/rb = 0.0630. 

Clamped cyl inder   under   uniform  axial   compression  ( ref .   15) .  
The p r o p e r t i e s  of t h i s   s h e l l  are v = 0.3,  r / t  = 100,  and 
2 / r  = 0.7. 

Cylinder  with  edge  r ings  under  uniform  axial   compression 
( r e f .   1 6 ) .  The c y l i n d e r   p r o p e r t i e s  are i d e n t i c a l   t o   t h e  
clamped cyl inder   above,   but   instead of having  clamped  edges, 
i t  as zero   eccent r ic i ty   square   edge   r ings   o f   th ickness  
tc172. The  clamped cy l inde r  is t h u s   e q u i v a l e n t   t o   t h i s  case 
with c + 00. 

Clamped shallow  spherical  cap  under  uniform  dead  pressure, 
A = 4 ( r e f .   1 4 ) .   T h i s   s h e l l   h a s   t h e   t h i c k n e s s   r a t i o  
t / R  = 0.02462 bu t  is o therwise   the  same as (l), above. 

The f i r s t   f o u r  cases are  b i f u r c a t i o n  cases, whereas   t he   f i f t h   ca se  i s  a 
l i m i t  load case. I n  t e t a b l e  below calculated  values   of  y ( i n   b i f u r c a t i o n  
cases)  and r = 2(-aa) lY2 ( i n   t h e  l i m i t  load  case) are  compared t o  a c t u a l  
r e l a t ive   changes   i n   buck l ing   l oad   due   t o   non l inea r i ty .  

Case 
.. . - 

Spher ica l   cap  (A = 6,  n = 2) 
Prolate   spheroid  (dead  pressure,  n = 3) 
Prola te   sphero id  ( l ive  p res su re ,  n = 3 )  
Clamped cy l inder   (n  = 9) 
Ring-s t i f fened   cy l inder   (c  = 0.5, n = 9) 
Ring-st i f fened  cyl inder  (c = 1, n = 9)a 
Ring-s t i f   fened   cy l inder   (c  = 2, n = 9)a 
Spherical   cap ( A  = 4 ,  n = 0) 

a 

~ - -.__ 

L - A s h c  

0.232 
0.00048 

-0.00447 
0.161 

-0.00433 
-0.00636 
-0.00591 

0.472 

Y 

2.23 
0.000483 

-0.00444 
0.932 

-0.00462 
-0.00753 
-0.00905 
" 

% err 

863 
0. 
0.7 

6.4 
18.5 
53.0 
93.6 

479 

a The va lues  shown f o r   t h e s e   s h e l l s  were inadvertent ly   based on  nonfunda- 
mental   eigenvalues.  
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Since  the  load  imperfection  theory  predicts  that  to  first  order, 
1 - &/Ac = y in bifurcation  cases  and 1 - As/Ac = r in limit  load  cases, 
the  percent  error  shown in the  table  is  indicative  of  the  accuracy  of  the 
modified  structure  method.  Except  in  the  cases  of  very  small  nonlinear 
effect,  this  error  is  disappointingly  large. In the  case  of  the  cylinder 
with  edge  rings,  the  nonlinearity in the  prebuckling  state,  and  hence  the 
size  of  the  load  imperfection,  approach  zero  as  the  ring  parameter  c 
approaches  zero.  Since  the  percent  error in the  method  also  gets  small 
with cy it would  appear  that  the  reason  for  the  poor  accuracy  shown in cases 
of  significant  nonlinearity  is  simply  that  the  load  imperfections  implied 
by  the  method  are  too  large  for  the  first-order  theory.  The  possibility'of 
an  error  in  the  numerical  calculations  was  essentially  eliminated  by 
independent  verification of a and y by hand,  using  alternate  formulas  for 
these  quantities in cases  of  dead  loading,  derived  in  Appendix C .  

Estimate  of  Size  of  Load  Imperfection 

The  above  results  suggest  that,  in  many  cases,  the  load  imperfection 
(i.e.,  theregative  of  the  fictitious  loads)  is  too  large  relative  to  the 
effective  applied  loads  (i.e.,  real  plus  fictitious  loads)  for  first-order 
load  imperfection  theory  to  treat  accurately.  In  the  case  of  dead  loading, 
the  imperfection  exists  only in the  meridional  free  thermal  strain 6 1  and 
the  surface  moment L2 [eqs. (B-8)]. Within  the  accuracy  of  the  Donnell- 
Mushtari-Vlasov  approximate  shell  equations  (ref.  17),  it  can  be  shown  that 
L2 is  equivalent  to  a  normal  surface  force X3 according  to X3 = (l/r)a(rL2)/as. 
Using  this  equivalence,  the  local  ratio  of  the  imperfection  in L2 to  the 
effective  applied  pressure  at  bifurcation  is  plotted  in  figure 1 for  the 
spherical  cap  cases  of  the  previous  secti0n.t A s  seen  from  this  figure, 
the  mechanical  load  imperfection  is  as  great  as 83% of  the  effective  applied 
pressure  in  the A = 4 cap, and  as  great  as 40% in  the A = 6 cap.  Although 
no  error  estimates  exist  for  the  load  imperfection  analysis,  intuitively 
one  might  expect  imperfections  of  such  magnitudes to be  too  large  for  a 
first-order  theory.  Also,  it  is  observed  that  the  error  in  the 
bifurcation (A = 6 )  case  is  much  greater  than  in  the  limit  load (A = 4 )  
case  (see  previous  section),  in  spite  of  the  fact  that  the  imperfection  is 
greater  in  the  latter  case. 

Parametric  Studies 

In  order  to  prove  the  correctness of the  theory  and  to  assess  the 
growth  of  error  with  the  size  of  load  imperfection,  two  parametric  studies 
were  made. One study was  made  for  the  bifurcation  case  and  the  other  for 
the  limit  load  case.  If  the  size  of  the  load  imperfection  is  reduced 

tNo  such  equivalence  exists  for  the  thermal  load 81;  however,  the  effect 
of  the  mechanical  load  imperfection  is  dominant in these  problems. 
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sufficiently,  say,  by  the.  factor 5 ,  from  that  required  to  fully  remove  the 
fictitious  loads,  then  equations (16) and  (17a)  should  agree  with  non- 
linear  buckling - loads  calculated  directly  with  the  additional  loads  equal 
to 1 - 5 times  the  full  fictitious  loads. 

These  calculations  were  made  for  the A = 6 and A = 4 spherical  caps, 
and  the  results  are  tabulated  in  tables I and I1 and  plotted in figures 2-5. 
In table I, the  numbers in parentheses  are  the  buckling  loads  predicted  by 
equation (16), and  the  nonlinear  prebuckling  states  upon  which  the 
bifurcation  pressures ps are  based  were  obtained  at  these  loads.  Note  from 
tables I and I1 that  the  critical  pressures ps(0) with  the  full  linearizing 
loads ( E  = 0 )  do  not  exactly  agree  with  the  linear  result  shown in the 
table  captions.  This  occurs  since  the  additional  loads  input  to  the 
nonlinear  prebuckling  program  themselves  contain  an  unavoidable  imperfection 
due  to  round-off  and  truncation  errors,  as  they  were  computed  to  at  most 
five  significant  digits  from  the  results  of  the  linear  calculations. 
Assuming  that  this  numerical  imperfection  has  negligible  effect  on  the 
values  of y and r ,  ps(0) is  used  in  place  of  pc  as  the  perfect  shell 
buckling  pressure  in  this  evaluation. 

It is  apparent  from  these  results  that  first-order  load  imperfection 
theory  handles  the  limit  load  case  much  better  than  the  bifurcation  case. 
However,  even in this  case  the  error  is  too  large  for  application  of  the 
modified  structure  method,  which  corresponds  to 5 = 1. It is  interesting 
to  note  that in the  limit  load  case,  except  for  very  small  imperfections, 
the  error  is  approximately  given  by  the  predicted  value  of 1 - ps/ps(0) 
(fig. 3 ) ,  which  is  in  agreement  with  the  analytical  result  presented  in 
Appendix  A  for  a  load  imperfection  proportional  to  the  applied  load.  In 
contrast  to  this,  the  error  in  the  bifurcation  case  is  roughly 100 times 
the  exact  value  of 1 - ps/ps(0)  (fig. 2). 

CONCLUDING REMARKS 

An  assessment  of  the  accuracy  of  the  modified  structure  method  as 
applied  to  shells  has  been  made  by  comparing  results  obtained  from it with 
exact  nonlinear  buckling  loads  for  several  axisymmetric  shells  under 
axisymmetric  loading.  The  following  conclusions  may  be  inferred  from  this 
study . 

(1) The  error  in  the  modified  structure  method  as  applied  here 
is  due  to  the  error in the  load  imperfection  analysis  used. 
This  analysis  is  used  to  remove  the  fictitious  loads  that 
enforce  the  linear  prebuckling  state. 
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(2)  In  cases  of  bifurcation  buckling,  except  for  shells  for 
which  the  nonlinear  effect  is so small  as  to  be 
uninteresting,  the  fictitious  loads  are  too  large  to  be 
treated  by  load  imperfection  theory. 

(3) The  error  in  load  imperfection  theory,  and  therefore  in 
the  modified  structure  method,  is  considerably  smaller 
in  limit  load  cases  than  in  bifurcation  cases.  However, 
even in the  limit  load  case  studied,  the  fictitious 
loads  are  too  large  to  be  treated  accurately  by  first- 
order  load  imperfection  theory. 

Therefore,  use  of  the  modified  structure  method  as an inexpensive 
means to calculate  nonlinear  buckling  loads  of  shell  structures  does  not 
appear  to  be  practical.  However,  since in the  case  of  general  asymmetric 
loading  (or a'general shell)  the  limit  load  case  is  far  more  prevalent  than 
the  bifurcation  case,  it  is  recommended  that  further  study be conducted 
to  determine: 

(1) if  a  second-order  load  imperfection  analysis  significantly 
reduces  the  error  for  the  limit  load  case  studied  here,  and 

(2) if  the  present  case  (a  shallow  spherical  cap)  requires  un- 
usually  large  fictitious  loads. 
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APPENDIX A 

CONSISTENCY  CHECK  OF  LOAD  IMPERFECTION  ANALYSIS 

From  equations (1) it  is  clear  that  such  an  imperfection  is  simply 
equivalent  to  a  change  in ), to h ( 1  + 5) in  the  perfect  structure  equations. 
Hence, it  follows  that  if  the  perfect  structure  bifurcates  at  the  load x,, 
then  the  imperfect  structure  bifurcates  at As = hc/(l + i). For  small 
imperfections,  i.  e. , 1: I << 1, one  thus  obtains  the  result 

Comparison  of  equation  (A-2)  with  equation (16) suggests  that  in  this  case 
equations (14) should  yield a = B = 0 and y = 1, in  which  event  the  relative 

5. If direct  calculation  of a, 6, and y for  this  imperfection  gives 
c1 = B = 0 and y = 1, this  will  consistute  a  check  on  the  load  imperfection 
analysis. 

- error in equation (16), i.e., (1 - As/Xc - ty)/(l - Xs/Xc),  is  approximately 

Calculation  of c1 

In this  case,  the  numerator  of  the  expression  for a [eq.  (14a)l  is 
Xc(a1*f30 + qo-ul),  which  is  shown  below  to  be zero. The  prebuckling  field 
equations  for  this  case  are 

Differentiation  of  equation  (A-3)  with  respect to h gives 
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(A-4b) 

Evaluation  of  equations (A-4) at X = A, and 6u = ul  give 

aO(l)**El + OO*k'Lll(UO (1) *,Ill) = qo'u1 (A-5~) 

Setting 6u = uo(l)* in the  eigenvalue  equations  [eq.  (8c)  of  ref. 91 and 
using  equation  (A-5a)  gives 

Substitution  of  equation  (A-5b)  into  equation (A-7) gives,  in  view of the 
symmetry  of  the  linear  operator H and  equations  (lla),  the  desired  result 

In  effect,  equation (A-8) and  hence c1 = 0 ,  is  the  compatibility  condition 
for  the  equations  for uo(')*, since  the  homogeneous  form  of  equations (A-4) , 
evaluated  at A = A,, is  satisfied  by  the  buckling  mode  u1. 

Calculation of B 

From  equations (A-1) and  (A-8)  and  the  fact  that cx = 0, equation  (14b) 
for f3 reduces to 

For  the  imperfection  given  by  equation  (A-l),  the  equations  for  u01  are, 
from  equations  (9a) , (llb) , and  (12a) , 
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Comparison  of  equation (A-10) with (A-4) shows  that 

uo1 = Acuo  (l)* + C0lUl (A-11) 

In this  case,  it  is  clear  from.equation (5) that  if 5 = 0 is  to  designate 
the  prebuckling  path,  then  the-constant  C01  must  be  chosen  to  be  zero. 
Since  an  imperfection  of  size 6 is  equivalent to changing  the  load  factor A 
by the  amount .A, to  first  order  the  prebuckling  state uo*  has  the 
corresponding  change i ~ ~ u ~  (I)*, as  indicated  by  equations (5) with 5 = 0 
and (A-11) with Col = 0. 

sufficient  to  show  that F(l B (uo(l)*,u 0. This  equality  follows  from  the 
compatibility of the  equations  for  uo . To  see  this,  differentiate 
equation (A-4) with  respect  to A and  evaluate  at X = X, to  give 

In  order  to  show  that = 0, from  equations  (A-9)  and (A-11) it  is 

ti); 

J2)* = L1(uo(2)*) + L11(uo*,uo(2)*) + L2(uo(l)*)  (A-12a) 

0 0  (2)*.6EO* + ao*.~ll (u~(~)*,su) + 2uo~1~*~~ll(uo~1~*ybu) = 0 (A-12c) 

ao(2)* = H(Eo(2)*)  (A-12b) 

Evaluation  of  equation  (A-12c)  at  bu = u1  gives 

Setting  bu = u~(~)* in  the  eigenvalue  equation  [eq.  (8c) of ref.  91  and 
using  equation  (A-12a)  gives 

In  view of equations  (lla)  and  (A-12b) , EO( ' ) *  = €1 , SO that 
subtraction of equation (A-14) from  (A-13)  gives 

01 0 ~ 2  (uo(')*) + 200(1)*9~1 1 (uo (1)*,Ul) = 0 (A-15) 

However,  from  the  definition  of F(')(u,v) [see  eqs.  (15)  and ( 0 of r f. 91, 
it  may  be  seen  that  the  left-hand  side  of  equation  (A-15)  is  Ff1I (UO(~~*,U~) , 
which  proves  that B = 0. 

Calculation  of y 
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To calculate  the  numerator  of  equation  (A-16),  evaluate  equation  (A-4c)  at 
h = X, and  bu = u2,  and  introduce €2 [by means  of  eq.  (13a)  of  ref.  91  to 
give 

uO(l)*-[E2 - (1/2)~~(u~) - a~~~ll(u~(')*~ulj~ + uo*-L11(u~(1)*,u2) = q0*u2 (A-17) 

Setting  6u = UO(')* in  the  variational  equation  for  u2  [eq.  (13c) of ref. 91 
and  using  equation  (A-4a)  gives 

(A-18) 

Subtraction of equation  (A-18)  from  (A-17)  gives 

qO*u2 + ~ ~ - 1 3 0  = -(1/2)F(l)(ul  ,ul) - aX  F("(u1 yuo (1) *) 
Substitution of equation  (A-19)  into (A-16) gives  the  desired  result, y = 1. 

C 
(A-19) 
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APPENDIX  B 

SHELLS  OF  REVOLUTION 

In this  appendix,  the  fictitious  loads  of  the  modified  structure 
method  are  derived  for  shells of revolution.  These  are  then  specialized  to 
the  case  of  axisymmetric  loading.  For  this  case  the  pertinent  coefficients 
in the X - 5 relation  are  written in terms  of  shell  variables. 

Fictitious  Loads 

Based  on  moderate  rotation  theory  of  shells  (see,  e.g.,  ref. 11) the 
strain  operator  L2(u) in equation  (la)  is 

where  the  three  rows  correspond  to  the  stretching  strains €1, €2, and €12, 
respectively.  Since  the  curvature-displacement  relations  are  linear,  L~(u) 
has  no  components  corresponding  to  the  bending  strains KI, KZ, and K12. 
Similarly,  for  rings  one  has 

L2(u) = W X 2  + w 2 
Y (B-2) 

In  this  case,  the  single  element  of  L2(u)  corresponds  to  the  hoop  strain E 
9 '  

From  equations  (20a),  (B-1),  and  (B-2),  the  fictitious  free  thermal 
strains  are,  for  the  shell, 

and,  for  rings, 



" . . . . . .. . - . . . . . . 

" ' I  

Note  that  the  fictitious  free  thermal  strains  do  not  vary  through  the  shell 
or ring  thickness. 

In  order  to  derive  the  mechanical  fictitious  loads,  it  is  noted  that 
the  term  a*L11(uYBu)  [cf.  eq.  (20b)l  in  the  equation  of  virtual  work  becomes, 
after  partial  integration,  precisely  the  virtual  work  of  the  nonlinear  terms 
in  the  shell  equations  of  equilibrium  and  natural  boundary  conditions  [eqs. 
( 4 )  and ( 6 )  of ref. 111. These  equations  have  been  transformed  in  reference 
5 by  replacing  the  shell  stress  resultants  by  the  natural  shell  force 
variables P,  Q, S along  undeformed  axial,  radial,  and  circumferential 
directions,  thereby  eliminating  the  nonlinear  terms  in  the  natural  boundary 
conditions  and,  consequently,  the  need  for  fictitious  line  loads  applied  at 
shell  edges.t  From  the  identification  of  the  nonlinear  terms  in  the 
transfoqed equations  as  pseudo  loads  [eqs.  (12)  or  ref. 51 and  the  relation 
between T 1 2  and S [eq.  (14a) of ref. 51, one  obtains  the  fictitious  shell 
loads 

where 

03-51 

In  equations (B-5) the  terms  in p represent  a  normal  pressure  field,  if  one 
exists , as  required  by  the  term q1 ( c )  -6u in  equation  (20b).  The  cubic. 
terms  in A arise  from  the  linearization  of S instead of Tl2, and  probably 
are  negligible  since  they  are  smaller  than  similar  terms  by  a  factor of the 
rotation w .  It  is  also  noted  that  the  quadratic  nonlinearity of !fl2 [see  eq. 
(14a) of ref. 51 introduces-a very  small,  if  not  negligible,  quadratic 
nonlinearity  in  the  eigenvalue  in  the  associated  buckling  equations. 

+The  transformation  from ?12 to S introduces  an  additional  small 
nonlinearity  in  the  constitutive  relations.  This  nonlinearity  can  be 
eliminatcd  by-introducing  a  fictitious  thermal  stress 8012 = 
(1/2)A2(T1 + T2);. An  imperfection  thermal  stress 012 = -A012 is  then 
required o compensate  for A012, and  corresponding  to  this,  terms  of  the 

012 p k, viz. //(aP,12/ahP),,,tk~rd~ds , where  the  derivative  is  evaluated 
at A = A, and ~12(~) is  the  shear  strain  of  the  buckling  mode (k = 1) or 
the  second-order  postbuckling  state (k = 2). 

f""p 7 0 PI*  in  equations (14 hould  each  be  augmented  by  the  work of -1 
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For  rings  one  obtains,  in  a  similar  way,  the  fictitious  loads 

ANx = X2f Gx 
4 

AN = .X2? j 
Y 4 Y  

Axisymmetric  Loading 

In the  special  case of axisymmetric  loading  considered  in  this  study, 
the  fictitious  loads  are  simplified  greatly.  Writing  the  load  imperfection 
components  as  the  negative  of  the  fictitious  loads,  one  has  from  equations 
(B-3) and (B-5) 

- el = -(1/2)~2ji2 
- 
x1 = Cp;i 

- - - - e2 = e12 = x2 = L1 = 0 

Also  from  equations (B-4) and (B-7 ) ,  no  fictitious  ring  loads  are  required 
and  hence  there  is  no  ring  load  imperfection. 

Asymmetric  bifurcation.-  In  this  case,  a = 0; also,  since  the  load 
imperfection  is  axisymmetric  and  the  buckling  mode  harmonic,  it  follows  from 
equation  (14a)  that a = 0. Equations (9a), (llb),  and  (12a)  then  show  that 
u01  is  axisymmetric,  and so from  equation (14b) it  follows  that B = 0. The 
corrected  bifurcation  load As is  then  given to first  order  in  terms of the 
linear  bifurcation  load A, by  equation  (16)  (with 5 = 1) and y is  calculated 
from  the  simplified  form  of  equation  (14c) 

y = -2(4*-u2 + a2*8*)  /hcF(l)  (ul  ,ul) (B-9 1 

In  terms  of  shell  variables,  the  numerator  in  equation (B-9) is 
- 
q**u2 + a2*8* = 2n/(Xl*0u + X 3 * p  + z2*ox + oTl;l*)rds (B-10) 

The  denominator F(l-1 (ul  ,ul)  has  been  given  as  equation (B-3) of  reference 14. 
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Axisymmetric  limit  load.- In this  case,  the  limit  load As is 
calculated  to  first  order  from  the  axisymmetric  linear  bifurcation  load 
hc through  equation  (17a)  (with ? = 1). The  coefficient a is  calculated 
from  equation  (13a)  and a is  calculated  from  equation (14a). In  terms 
of shell  variables,  the  numerator  in  equation  (13a)  is 

(B-11) 

where T1 and x are  buckling  mode  variables.  The  numerator  in  equation 
(14a)  is  identical  in  form  to  that  given  in  equation  (B-10)  with  the 
displacements  and  stress  resultant  of  the  axisymmetric  component of the 
u2-state  being  replac d by  the  corresponding  buckling  mode  variables. 
Also, in  this  case, Ff;')(ul  ,ul) is  twice  the  value  given  by  equation (B-3) 
of reference 14. 
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APPENDIX  C 

ALTERNATE  FORMULAS  FOR LOAD IMPERFECTION  PARAMETERS 

In  the  modified  structure  method  the  effective  applied  load  contains 
both  a  part  which  depends  linearly  on  the  load  factor A (the  real  load)  and 
a  part  which  is  second-degree  in X (the  fictitious  load).  Consider  a  load 
imperfection  which  is  proportional  by  the  factor  to  the  sum  of  the  linear 
part  X(qO,eO)(dead  loading  is  assumed),  plus  twice  the  second-degree  part 
Aq,A8 = X2(qf,8f)r i=e- 3 

Such  an  imperfection  is  equivalent  to  the  new  loading, (1 +-~)~(q~,e~) + 
(1 + 2i)X2(qf,8f). Insofar  as 1 + 25 = (1 + i)2 for  small 5, this  is 
equivalent  to  simply  replacing X by  X(l + E )  in  the  original  loading. 
Hence,  for  sufficiently  small E ,  it  follows  that  if  the  perfect  structure 
bifurcates  at  the  load X,, the  imperfect  structure  bifurcates  at 

Comparison  of  equation  (C-2)  with  equation (16) suggests  that  in  this  case, 
as  in  the  case  of  pure  linear  loading  and  an  imperfection  proportional to 
it  (Appendix A), a = B = 0 and y = 1. Verification of these  results  from 
equations (14) follows  along  the  same  lines  as  the  calculation  of a, 6, and 
y in  Appendix  A  and  is  not  repeated  here. 

In the  modified  structure  method,  the  imperfection  treated  is  the 
negative  of  the  fictitious  load  Aq,A0  [eqs. (2111. Formulas  for a and y for 
the  imperfection = 2Aq, 5 = 2A8  can be derived  from  the  above  results 
simply  by  taking  the  contribution of the  linear  imperfection  of  equation 
((2-1)  to  the  right-hand  side of equations  (14),  viz. 

(C-3a) 

and  if a = a = 0 
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Since  the  imperfection  of  the  modified  structure  method  differs  from  this 
imperfection  by  the  factor  -1/2,  one  obtains  from  equations  (C-3)  alternate 
formulas  for a and y of  the  method,  viz. 

and  if a = a = 0 

(C-4a) 

(C-4b) 

Note  that  these  formulas  are  free  of  explicit  dependence  on  the  fictitious 
loads, qo and e o  being  the  real  applied  mechanical  load  and  free  thermal 
strain  at  unit A. They  provide  an  independent  verification of the 
numerical  evaluation  of a and y, including  the  calculation  of  the  prerequi- 
site  prebuckling,  buckling,  and  postbuckling  states. 
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TABLE I 

CLAMPED SPHERICAL CAP, A = 6, pc/E x lo5 = 14.8572, nc = 2 

- 
5 

0 
0.0001 
.OOl 
.004 
.Ol 
.02 
.05 

0 
0.000223 
.00223 
.00894 
.0223 
.0447 
.1118 

P,/E X 105 
.- . . . - . .. 

14.85780 (14.86) 
14.85455 (14.85) 
14.8298 (14.82) 
14.7717 (14.72) 
14.690 (14.53) 
14.593 (14.19) 
14.400 (13.20) 

" .  . - 
SY* = 

1 - P,/P,(O) 

0 
0.000219 
.00188 
.00579 
.0113 
.0178 
.0308 

% error = 
(y/y* - 1) x 100 

" 

%2 
19 
54 
98 
150 
263 

TABLE I1 

CLAMPED SPHERICAL CAP, A = 4, pc /E  x lo5 = 81.220, nc = 0 

Ir ;:II 0.001 

c1/2r 

0 
0.02890 
.0914 
.2890 
.914 

" 

1 I 
81.302 

.472 42.9 

.2226 63.20 

.0842  74.45 
0.02876  78.964 
0 " 

0.5 
8.6 
29.8 
93.6 

I 
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FIGURE 1. MECHANICAL LOAD IMPERFECTION AT BIFURCATION 

OF CLAMPED SHALLOW SPHERICAL SHELLS 
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FIGURE 2. RELATIVE CHANGE I N  CRITICAL PRESSURE OF CLAMPED SHALLOW SPHERICAZ. 

SHELLS ( A  = 6)  VS. FRACTION  OF FICTITIOUS LOADS REMOVED 
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FIGURE 4 .  CRITICAL PRESSURE OF CLAMPED SHALLOW SPHERICAL  SHELLS (A = 6) 
VS. FRACTION OF FICTITIOUS LOADS REMOVED 
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FIGURE 5. CRITICAL  PRESSURE  OF  CLAMPED SHALLOW SPHERICAL SHELLS (A = 4) 
VS. F R A C T I O N   O F   F I C T I T I O U S  LOADS REMOVED 

NASA-Langley, 1972 - 32 CR-2008 


